
ISRAEL JOURNAL OF MATHEMATICS, Vol. 73, No. 3, 1991 

THE PRODUCT STRUCTURE OF FINITELY 
PRESENTED DYNAMICAL SYSTEMS 

BY 

N I C O L A I  T. A .  H A Y D N  

Department of Mathematics, University of Southern California, Los Angeles, CA 90089, USA 

ABSTRACT 

We consider finitely presented systems, which were introduced by Fried, and ex- 
amine the circumstances under which these systems have canonical coordinates. 
We give necessary and sufficient conditions for their existence in a combinatorial 
way. 

Finitely presented systems which were introduced by D. Fried [9] with the inten- 

tion of  generalising symbolic description of dynamical systems have recently be- 

come of  interest as a class of  dynamical systems to which the extensive theory of  

Axiom A systems and sofic systems can be extended without incurring too many 

casualities. However,  one property that gets lost in generalising is the local prod- 

uct structure or canonical coordinates, which characterise strongly hyperbolic sys- 

tems: with it the shadowing property also goes, although, as Fried shows, there are 

still finite Markov partitions. On the other hand, much of the theory on Axiom 

A systems can indeed also be formulated for finitely presented systems. As an ex- 

ample we can point out Baladi's paper [1], which gives a good account of  how the 

theory on Gibbs '  and equilibrium states can be carried over to finitely presented 

systems. 

The questions treated here arise in a natural way from Markov partitions on Ax- 

iom A systems (cf. Smale [13] and Bowen [2]), for it is well known that an Axiom 

A diffeomorphism on some manifold M is semiconjugate to the shift on a subshift 

of  finite type constructed by partitioning M in a certain way. However, as a sub- 

shift of  finite type can be isomorphic only to an Axiom A diffeomorphism over 

a non-wandering set of  zero dimension, the "boundary set", that is the set of points 

whose preimages in the shift consist of  more than one point, contains essential in- 
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formation about  the topological structure of  the non-wandering set, despite the 

fact that it has measure zero for any ergodic measure which is positive on open 

sets. 

The present note resolves the question of canonical coordinates for finitely pre- 

sented systems from the purely symbolic point of  view, by establishing a combi- 

natorial criterion (Theorem 9) as a necessary and sufficient condition for the 

existence of  a local product structure. In the first section we introduce finitely pre- 

sented systems as quotients of  subshifts ~A- In section 2 we describe a non- 

transitive subshift which is reminiscent of  the ones used by Manning [11]. The 

subshift thus obtained has a partial ordering (by inclusion) such that maximal el- 

ements correspond to equivalence classes in gA. In section 4 we reduce the origi- 

nal gA to a subshift in which transitive points have no other equivalent points 

besides themselves with respect to the induced equivalence relation. In section 5 we 

prove the main result, determining the conditions under which one can define a 

local product structure (Definition 7) on the quotient space ~. Such a product 

structure is equivalent to local canonical coordinates given by the foliations of  

transversally intersecting stable and unstable directions. Let us note that Fried ([9], 

Lemma 3) constructs a finite-to-one extension of  fl with canonical coordinates. 

1. Definitions 

We consider a finite set of  n symbols A = [ 1 . . . . .  n } with the discrete topology. 

Let A be an irreducible n x n-matrix of  zeros and ones and define the shift trans- 

formation on the space 

V ' A : I X E I ~ A : A x i ' x ' + I : I ' i E Z l i E z  

by (ox)i = xi+l, i E Z. We use the notation a ~ b if Aa.~ = 1. We write xk- • " x / E  

EA if Xk" " "X/is an allowed sequence in EA and say r E EA is a loop if r r  E EA and 

denote by rk its concatenation r:r. • • 7, k-times, k a positive integer. The topology 

on EA is generated by the cylinders sets 

U(Xk ' "  "Xl) = [Y @ EA : Y k ' ' ' Y l  = Xk'"  "Xl], 

where x~. • -xt are finite words in EA. The cylinders U ( x k .  • • xl) are closed-open 

sets in EA, which is a totally disconnected space. A point x in EA is transitive if for 

every y E YA and m > 0 there exists an integer k such that (akx)i  : Y i  for lil _< m. 

The subshift 2A is (doubly) transitive if for every positive integer N there exist 

n ,n '  >_ N such that B (1 o~B" ~ G,  B f) o - ~ ' B  ' 4: ~ for open and non-empty 
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B , B '  C [;A- This is the same as that  A is irreducible,  or  that  fo r  every i , j  E 

{1 . . . . .  n} there exists an m > 0 such that (A m)id > 0. Moreover ,  EA is topologi-  

cally mixing if for  every open non-empty  B, B '  C ~]A there exists an N such that  

B (] a n B  ' ~ f9 for all n _> N. Equivalent to this is that  A m is a positive matrix for  

all large enough m. 

A finitely presented system is given as the quotient  o f  a subshift o f  finite type 

EA by an equivalence relation which is induced by a symmteric and reflexive rela- 

t ion on the alphabet  A.  To begin with denote by - a relation on A such that  a - 

a, and a - b implies b - a, a, b E A.  We extend this relation to the subshift EA 

and say x -- y if xi - Yi for  all i E Z. I f  = is transitive, that  is x -~ y = z implies 

x --- z for any three points x , y , z  E EA, then --- is an equivalence relation on ZA. We 

say two words xk .  • "xl ,Yk" • "Yt E EA are related, xk. • .xt - Yk" • "Y/, if xi - y~, 

k _< i ___ l. Put  ot = ]A 13 and we have the following result. 

L E M ~  1. A relation ~ on A induces an equivalence  relation on ~'A in the above  

m a n n e r  i f  a n d  o n l y  i f  xo - zo f o r  any  three  EA-WOrds x _ ~ . . . x ~  -- y _ ~ . . . y ~  -- 

Z -~  " • • Z~ related in the  way  indicated.  

PROOF. If  X0 -- Z0 for any three strings as in the Lemma,  then = is an equiva- 

lence relation by shift invariance. 

Secondly, suppose - induces an equivalence relation --- on ZA, and assume there 

are three words o f  length 2o: + 1, x - o - "  .x~ - y _ ~ - . - y ~  - z _ ~ . - - z ~  related to 

each other in the given order for which x0 ÷ Zo. We shall contradict  the transitiv- 

ity o f  ---. The strings are sufficiently long so that (Yk ,Xk ,Zk)  = (Y/,Xt,  Zt) for some 

0 ___ k < l < a .  Iterating this loop yields three points which are equivalent on pos- 

itive coordinates. The same argument applied to negative indices yields three points 

x , y , z  E EA for which x ---y = Z holds, but not x --- z since by assumption x0 + z0. 

We immediately can make the following observation:  

COROLLARY 2. I f  -~ is an equivalence  relation on EA, then  x: - Z~, k + o~ < i <_ 

l -  a f o r  any  three s tr ings  x k "  . x t -  Yk" " " Y : -  z k " "  z : f o r  which  k + 2c~ < l. 

Assume that  --- is an equivalence relation and denote by 7r the quotient  map 

EA ~ [2 = EA/= .  Then we call the quotient space f~, which is equipped with the 

automorphism induced by a and a suitable topology (section 3), a f in i t e l y  presen ted  

d y n a m i c a l  s y s t em .  We also say the pair (SA,-----) is finitely presented. 

In [9] Fried gave four equivalent characterizations o f  finitely presented systems, 

two more o f  which we shall mention here. A homeomorphism T :  f~ ~ f/, f / a  com- 
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pact topological space, is called expansive if there exists a closed neighborhood 

V C f~ x f~ of  the diagonal A such that T* = T x T: f~ x fl --, f l x  fl satisfies A = 

n_oo<i<oo T .9 v. We have the following result by D. Fried. 

THEOREM 3 ([9], Theorem 1 and 2). (fl, T) is a finitely presented dynamical sys- 

tem if and only if either 
(i) T:  f] ~ f~ is expansive, or 
(ii) (f~, T) admits arbitrarily fine but finite Markov partitions. 

A Markov partition of (f~, T) is a partition of fl into finitely many proper sets Rj 

which satisfy the so-called Markov property (Rj is a proper set if it is the closure 

of  its interior). For a precise definition and details see [3] and [12]. 

Also note that Dateyama [6] showed that finitely presented systems T:  f~ -* f~ 

have the special pseudo-orbit tracing property, which means that fl has a finite par- 

tition D such that any 6-pseudo-orbit [~i:i} (d(T((i),~i+l) < t5 for all i, 6 small), 

for which T((s) and ~i+l are in tlhe same element of D for all times i, can be shad- 

owed by a genuine orbit. In the special case where D = Jill, fl has the usual 

pseudo-orbit tracing property and thus canonical local coordinates. For subshifts 

it was shown by Walters [14] that the pseudo-orbit tracing property is equivalent 

to the subshift being of finite type. 

The introduction of finitely presented systems in [9] was motivated by the de- 

sire to unify the existing theories of strongly hyperbolic systems (Axiom A), zero 

dimensional dynamical systems (sofic systems [15],[5]) and Thurston's pseudo- 

Anosov homeomorphisms. Let us now point out the connection with the first 

mentioned class, or, as we shall actually do, with Ruelle's Smale spaces [12]. Let 

(~2, T) be a Smale space (a compact metric space with an expanding homeomor- 

phism and a local product structure) with metric d( . , .  ) and homeomorphism T 

with expansive constant e. Let [Rj : j  E J I ,  J a finite index set, be a Markov par- 

tition of fl, where the rectangles; Rj are proper and satisfy int Ri fq int Rj = Q if 

i :g j .  We denote by A the associated transition matrix defined by Aid = 1 when- 

ever intRi CI T l(int Rj) is non-empty and zero otherwise. The Boolean matrix A 

defines a subshift r.A over the alphabet [ l . . . . .  [J]}. The shift o : EA ~ EA is semi- 

conjugate to T, TTr -- 7ra, where the projection 7r:~A ~ f~, given by 7r(x) = 

n_~<i<~ T- i (Rx) ,  is finite to one and one to one almost everywhere with respect 

to any ergodic measure positive on open sets and in particular on doubly transi- 

tive points (for definition see section 4) provided the partition is fine enough. If 

OR denotes the collective boundary set of the rectangles R~ then I,.)iez TS(OR) is 

precisely the subset on fl on which 7r-1 is not unique. We say that two rectangles 

are related if they have non-emply intersection. It follows that ~ is an equivalence 
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relat ion.  Here  we used expansiveness,  since for  two equivalent  points  x ~ y, 

d ( T k r ( x ) ,  T k r c ( y ) )  <- E for  all integers k, and thus their r - images  must  coincide, 

7r(x) = a ' ( y ) ,  if the rectangles are in d iameter  less than  ha l f  an expansive con- 

s tant  c. 

2. The shift over related symbols 

In this section we introduce a non-transi t ive subshift  which plays the key r61e 

in discussing the quotient  r-A/=.  We shall assume that  r. A is topological ly mixing, 

i.e. A "  > 0 for  n large enough.  

F r o m  now on we assume that  = is an equivalence relat ion on I]A. Two words  

Xk " • " x l ,Yk  " " "Y~ E ~A a r e  said to fo rm a d i a m o n d  if Xk = Yk, X~ = Yt and a collaps- 

ing d i a m o n d  if they are related. We will assume that  --- does not collapse diamonds.  

This condition is in particular satisfied in the case where E~ is the subshift derived 

f rom a fine enough Markov  parti t ion of  an Axiom A dif feomorphism.  In [2] chap- 

ter 2 this a rgument  is used to show that  the quot ient  m a p  7r : EA ~ fl is bounded  

(at most  IA 12) to one. (To decide whether  = collapses d iamonds  it is enough to 

check pairs o f  strings whose length is at most  [A I 2 "[- 1.)  

Denote  by An the (unordered)  subsets [a0 . . . . .  an} C A o f  n + 1 pairwise re- 

lated symbols  none  of  which appears  twice. (In case o f  a M a r k o v  part i t ion,  An 

consists o f  all combinat ions  of  n + 1 neighboring rectangles.) We introduce an or- 

dering O n A n  by t < ~', t = [a0 . . . . .  a~}, ~ '=  {b0 . . . .  ,b,,] if there is a set o f  re- 

lated ZA-words x ~ . . . x , ' , ,  i = 0 . . . . .  n, connect ing ~ with ~ (i.e. x~ ~ x~, i , j  = 

0 . . . . .  n, k = 0 , . . . ,  m for  some m ___ 1, such that  t = [x~ : i }, ~ = [Xm : i 1). Thus 

An is a disjoint union o f  subsets A, ,k ,  k = 1 . . . . .  kn, such that  if to , t1  E A, ,k  

then to < t l ,  (l  -< t0 (and therefore  to --- t0) unless A~.k consists o f  a single sym- 

bol which cannot  be repeated.  I f  ( E A~,k and ~'E Am, i ,  ( n , k )  --/: ( m , l ) ,  can be 

joined up, then either t < ~- or ~" < t (where < means __<_ holds but  not _ ) .  In this 

way we part ial ly order  Un ,kA, ,k .  Observe  that  it is impossible to have to, t~ E 

An .k ,  f E  Am,z,  ( n , k )  :/: ( m , l ) ,  such that  (o -< ~'-< t l .  This is obvious  for  n = m 

( f rom the definition); and if n :g m we have, by transitivity of  E,,k, to --< ~" ----- t~ --< 

~o, which implies that  there are related words beginning in (o and returning to it. 

A set o f  related words  running th rough  the loop (0 --- ~" -< t~ --- to induces on (0 a 

pe rmuta t ion  7r, a power  of  which is the identity. Since t0 and ~" have different  

cardinalit ies we would obta in  a collapsing d iamond .  Summing  up: for  n ¢ m we 

have thus always either A, ,k  < Am, t ,  or Am. t  < A, , ,k ,  or neither.  

We prune  away those A~,k whose elements do not occur  in doubly  infinite se- 

quences composed  over  Uk , ,  An,k. Denote  the new symbol  set by C and define a 

I C[ x [ C[- t rans i t ion  matr ix  A* by setting A * [ t ,  ~'] = 1, t ,  ~'E C, whenever  there 
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exist EA-WOrds {a ia j : i , j ]  (of length 2) such that [ai: i]  = ~ and [aj :j} = g'; and 

A*[~, ~'] = 0 otherwise. This defines a subshift r~c whose transition matrix C is, 

with suitably arranged C, 

[ A 0 

° ° °  0 S 

s _> 1, where the submatrices A~" are of square block upper triangular form (if 

suitably arranged) 

At, * . . .  • ] 

• " • 0 

for some r = rt - 1. One of the submatrices At  contains A somewhere in its diag- 

onal. The transition matrices A.,k determine in the usual way subshifts ~A.,k over 

the alphabets A~,k. Call [ A ~ , k : k , n ]  and {~A.,k: k ,n]  from now on by single in- 

dices: { Ci : i } and { Ei: i 1. Observe: 
(i) C is closed under intersections of its elements (as subsets of A); 

(ii) the subshifts r.i are topologically transitive unless they are empty (then 

Ci = [~'} such that ~ ~  ~); 
(iii) Denote by (5'(i) the cardinality of the elements of Ci as subsets of A and 

call 6(i) = 6'(i) - 1 the dimension of Ci (also 6(() = 6(Ci) = 6( i ) ,  ~ E C~). 

For x E £A we denote by (x) = {z E EA : Z ~ x] E Zc the equivalence class of 

x and by (x) i  = { zi E A : z E (x',,] its i-th coordinate. On Zc we have a partial or- 

dering by inclusion: x C y if xi C y~ (as subsets of A) for all i E Z, x , y  E Ec. 

Equivalence classes (x) are maximal elements in r. c and, vice-versa, maximal ele- 

ments in r~ c correspond to poinls in the quotient E A / ~ .  

3. The topology on ~,A/-~ 

The natural class of H61der equivalent metrics on ~2 = 2A/~ was determined in 

[8] by Fried. We outline his argument here. As in Corollary 2 let a = [AI 3 and de- 

fine symmetric neighborhoods of the diagonal in EA X 2A by 

U. = { (x ,y )  E ~A X 2A :X i - -  Y i  for all {i I <_ 2c~n}, 
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n = 1 . . . . .  We claim that  Un o Un * Un C Un-l ,  for  all n > 1, where Un o Un = 

{(x,z) :3y E ~A such that  ( x , y ) , ( y , z )  E U~]. To see this, let w , x , y , z  E EA satisfy 

wi - xi - Yi - zi v i i i  <-- 2an.  Corol la ry  2 applied once yields wi ~ Yi for  ] i I -< 

a ( 2 n  - l )  and  a second t ime,  shows tha t  wi ~ zi ,  Iil <- 2cz(n - 1). Hence  

U , .  U, o Un C U,_I ,  n > 1, and by Fr ink 's  metr iza t ion l emma  ([10], p. 185) there 

exists a pseudo-metr ic  d on 12, with the p roper ty  U~ C {(x,y)  : d ( x , y )  < 2 -~ I C 

U~_1, n E N. In fact d is a metric since x , y  E ~A represent  the same point  in i2 if 

and only if xi ~ Yi, i E Z, which is the case if and only if ( x , y )  lies in the intersec- 

t ion ("1~_>1 U~, which is the diagonal  in XA/= × EA/=.  

The distance funct ion d ' ( x , y )  = k p, where p = max{ q : x i  ~ Yi, ]i] <_ q l is with 

~k = 2 -x~ equivalent  to d :  C - l d  < d'  <_ d, where C = 22c~. As o is expansive,  the 

topo logy  on f~ induced by d is generated by the "cylinder sets" 7 r ( U ( v k . . .  v/)), 

where U( vk. • • v/) = [ z E EA : Zi E vi, k _< i _< l} and vk" • • v / a re  finite strings in 

Xc. For  x E EA we define: 

W S ( x , k ) = [ Z e Z A : Z i - x i ,  i > _ - k } ,  W U ( x , k ) = [ Z E E A : Z i - x i ,  i < _ k } ,  

whose unions over  k E Z are the stable, WS(x) ,  and unstable,  W " ( x ) ,  directions 

th rough  x. For  y E WS(x,1) we have d(eZl~'x, aZh~y) <_ 2 - 1 d ( x , y ) ,  1 > 1, and 

therefore  d(a tx ,  oty)  < C2- t /Z°~d(x ,y ) ,  l _> 1, with some C _< 2 2a-1. Following 

Mather  we can replace this metric  by an adap ted  one, d", for  which the constant  

C equals one: Let 3' = 2-1/2~ < 1 and define c l " (x , y )  = ~ao<_t<za'y-ld(olx, oly)  

which, as one readily verifies, is an adapted  metric  on ~2. The  shift o on EA in- 

duces a h o m e o m o r p h i s m  on ~ which we again denote  by o. For  positive k the 

h o m e o m o r p h i s m  o on WS(x,  k )  contracts  distances in the d"-metr ic  by 3, and 0 -1 

contracts  distances on WU(x, k)  by a factor  3'. The stable and unstable directions 

th rough  the points  o f  ~2 are WS(x,  1) and WU(x,  1). Interest ingly enough,  it is at 

this point  possible to draw conclusions as to what  the topological  dimension of  the 

quot ient  space might  be. In fact ,  with a result o f  Fathi ' s  ([7], Coro l la ry  5.3), we 

get an upper  bound.  Hence,  the topological  dimension,  which is bounded  by 

the H a u s d o r f f  d imens ion  HDd(f~) ,  is less than  or equal  to 2 h ( 9 ) / l l o g 3 '  I < 

4c~h (EA)/log 2, where h is the topological  entropy.  This est imate applies to any c~ 

for  which the s ta tement  of  L e m m a  1 holds,  and in general can be chosen much  

smaller  than  [A 13. 

4. Reducing I: A 

The condi t ion that  equivalence classes are finite does not  suffice to guarantee  

that  a transit ive point  has no other  equivalent  point  besides itself. In this section 
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we introduce a reduction procedure  and show that it is always possible to assume 

that transitive points have trivial equivalence classes. A point x in EA (Et) is (dou- 

bly) transitive if for any given y E EA (Et) and n >_ 1 one can find positive integers 

m, rh, such that Yi = (amx)i  = (o-'~x)g for l il -< n. In other words, every EA-word 

( ~ r w o r d )  appears infinitely often in the past and future dimensions o f  x. In this 

section we treat the case where EA has transitive points with non-trivial equiva- 

lence classes and by using Theorem 5 we shall see that  EA can be replaced by an- 

other  subshift o f  finite type in which transitive points have trivial equivalence 

classes and whose quotient  is isomorphic  to f~ = ~ A / = .  

Similar to the nota t ion we introduced for E A we set U ( x ~ " ' X t )  = 1~ E Et: 

~ "  • • ~t = x~" • • Xt }, Xs" • • Xt E Et, for the closed-open cylinders in Et with X~" • • Xt 

on the coordinates f rom s to t. 

LEMMA 4. Le t  X be a transit ive po in t  in s o m e  Et. Then any two ~, ~ E X C ~A 

are ei ther identical or disagree on all coordinates.  

PROOF. Let X be a transit ive point  in Ez. We have to show that  d i f ferent  

EA-points ~, ~" E X differ on all places, that  is ~i 4: ~'i for all i E Z. Suppose ~k = ~'k 

for  some k and pick an l such that  ~z 4: ~'t. Wi thout  loss o f  generality we can as- 

sume that  k < l. Since X is transitive, the word Xk" " "XZ appears infinitely often,  

on the "positive side", say at intervals o f  lengths ml ,  m2 . . . .  (all o f  which we as- 

sume to be bigger than 1 - k).  'We want  to construct  a collapsing d iamond.  Now 

X k ' ' ' X t ' " "  Xk+m, need not  haw. ~ a collapsing d iamond  in EA, because strings be- 

ginning in Xk (as subsets o f  A)  at the same element do not necessarily end up 

again at the same element in Xk+m, = Xk. However ,  it follows f rom Car tan ' s  

drawer  principle that  Xk+mp'' 'Xk+m,, has a collapsing EA-diamond for some 

p < q .  • 

Put  9k = E k / = ,  where we denote by = the equivalence relation induced on Ec. 

For  k, l satisfying 6 ( k )  = 6( l )  + 1, define a map v f rom Cg into C7, the power set 

o f  Ct, by 

0( ) ( . )  • [ [ X 1 , .  . . , X  ~5(k) } , I X ° , X  2 . . . . .  X g~(k)l . . . . .  {X°,X 1 . . . . .  x6 (k ) - l ]}  N C I ,  

X = { X ° . . . . .  X 6(k) ] E Ck and put v (Ck)  = (.J { v (x) : x E Ck } C Ct. In general only 

the inverse v -1 is well defined on v(Ck) .  Denote  by o(Ek) the subshift over the 

alphabet  v ( C k )  with transitions induced by v. In other words,  we set ~" ~ ~" if 

(~,~ ' )  E v(X)  x v(X') for some X,X' E C, ,  X - '  x'. I f  Q 4: v ( C k )  C Ct, then V(Ek) 

is the "un ion"  o f  subshifts that  are isomorphic  to each other.  We formula te  the 

main  result o f  this section. 
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THEOREM 5. (i) I f  v (r,k) = El then ~k =- fit, and 

(ii) i f  v(r,k) :~ r~l for  all ~k with 6(k)  = 6(l) + 1, then transitive points in ~t 

have trivial equivalence classes. 

PROOF. It is obvious  that  equivalence classes in r,k are by v : r,~ ~ r~ t again 

m a p p e d  into equivalence classes, and,  on the other  hand,  it is easily seen that  

points  in r,k that  are not  equivalent  cannot  be m a p p e d  to equivalent  points  in r~ t. 

Hence  if v (r,k) = Et, then their quotients are isomorphic ,  where the i somorphism 

is defined in the obvious  way by v. 

We show that  if every point  in Et has a non-tr ivial  equivalence class then there 

exists a r, k such that  v(Ek) = r,t. Suppose  ~ is a sequence in r~t with non-trivial  

equivalence class. By L e m m a  4 it follows that  ~i ~ ~'i for  all ~" E ( ~ ) \ ~  C EA- 

Set ~i = { ~0 . . . . .  ~ ( t )} ,  ~i = {~° . . . . .  ~./~(l)}. Then  we can find indices j :  Z --, 

{0, ,6(l)} so that  ~[(i) f~ ~i and ~[(i) --, ~y(i+l) • . .  " " ~i+1 , i E Z. Thus  ~i : ~i ['j ~./(i) are 

elements in some Ck, 6(k)  = 6(l)  + 1. In par t icular  ~ can be chosen to be transi- 

tive and therefore  realises every possible transi t ion.  Thus ~' E Ek and v(~ ' )  = 

f rom which follows that  v(Ek) = ~t and therefore  by the first par t  o f  the theorem 

~k ~ ~/" • 

DEFINITION 6. We call a subshifl  ~z or suba lphabe t  Cz reduced if r~z satisfies 

the condi t ion of  Theo rem 5(ii). 

As a consequence o f  Theo rem 5, for  any finitely presented system (~A,~) ,  

there are numbers  f[0] . . . . .  e[p] such that  

(i) 6 ( g [ q +  1]) =6(e[q] )  + 1, o(~e[q+ll ) : ~ g [ q ]  f o r 0 _ < q < p ,  

(ii) t ransit ive points  in ~e[p] have trivial equivlaence classes, and 

(iii) ~e[q] -~ ~ A / ~ ,  0 <--- q <- p. 

5. The product structure on fl 

In this section we prove  the main  result, giving necessary and sufficient condi- 

tions under which a finitely presented system has a local product  structure. The cri- 

ter ion appears  rather  natural .  The  idea is to consider half- infinite related strings 

and to examine the situations under which a positive infinite sequence can be linked 

to a negative infinite sequence. In practice it takes a finite number  of  steps to de- 

cide this p rob lem,  which makes  Theo rem 9 easily accessible to the actual  compu-  

ta t ion of  concrete  examples.  We use the defini t ion of  p roduc t  s tructure as given 

by Ruelle ([12], chapter  7). 

DEFINITION 7. A local product structure on [2 is a map  [ . , .  ] : [2 x ~2 ~ fl defined 

in a ne ighborhood  of  the diagonal  and has the propert ies  
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(i) [ x , x ]  = x ,  [ [ x , y ] , z ]  = [ x , [ y , z ] ]  = [ x , z ] ,  [ax,  ay] = a [ x , y ] ,  whenever 

defined; 

(ii) there exist 3' > 0, k E (0,1) so that 

(~) if d ( y i , x )  < 3' and [ y i , x ]  = Yi,  i = 1,2, then d ( a ~ y x , a ~ y 2 )  < 

X"d(y~ ,Y2), n > 0; 

(/3) if d(x ,  zi) < 3" and [x,  zi] = z i ,  i = 1,2, then d ( a " Z l , a n Z 2 )  <- 

klnl d ( Z l , Z 2 ) ,  n < O. 

The local stable and unstable', directions through x are given by 

W~Soc(X) = [y E ~: [ x , y ]  = y ,  d ( x , y )  <_ k} 

and 

Wl~c (x) = [y  E 12: [ y , x ]  = y ,  d ( x , y )  <_ k } .  

The point [x,y] lies in the stable direction of x and in the unstable direction o fy .  

The product structure on subshifts is given by [ x , y ]  . . . .  y - ~ y o x ~  xa • • • and de- 

fined whenever d ( x , y )  < 1 (if the subshift is of  type 2) with the usual metric in- 

troduced in section 1. Let us note that Bowen ([4], Proposition 6.2) showed that 

if a shiftspace has a local product, the subshift necessarily is of finite type. 

We have to suffer some more notation and begin by introducing one-sided sub- 

shifts (as usual A n > 0, for n large enough): 

~A = I X E  1-[ A : A x j . x ~ + , = l V i < O  1 ,  
. - o o  • . ,  , 0  

0 , . . .  +oo 

Denote by U + ( a )  the cylinder that consists of all sequences YoYJ • • • E EA+ which 

begin with Yo = a and similarly U - ( a )  = { . . . x _ ~ x o  E E A - : X o  = a}. Two se- 

quences XoXl " ", YoY~ " "" in EA+ are related, XoX~ . . . .  YoYI " " ' ,  whenever xi - Yi, 

i = 0 , 1 , . . .  (similarly for ~A-). We use the notation + whenever either sign ap- 

plies. For ~" E EA -+ we put 

S+-(i;) = {~ e x : ~  :~ - ~'l, 

for the set of  one-sided sequences related to ~. Denote by 7ri the projection onto 

the i-th coordinate, for instance 7roS-(~') = [Yo: "" "Y-~Yo E S-(~')], similarly 

~roS+(~'). As C and Ec the corresponding one-sided objects C +, C - , ~ c * , ~ c -  are 

defined as follows. To find C* we take Uk, n An, k and prune away those symbols 

that cannot (in I2c) be extended infinitely in a forward direction. Similarly C -  is 
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found  as Uk,. A,,k  less those elements that do not  allow an infinite backward  ex- 

tension. Transi t ion matrices C +, C -  (and similarly A + ( i ) , A - ( i ) )  are defined in 

the same way as in section 2. We call the associated one-sided shift spaces ~c+,  

E c - .  Let /3 = 21AI and note that  (i) C + n C -  = C, (ii) Ec+,r~c- have the same 

transitive subshifts as Ec,  and (iii) if uoul. • • E r~c+, then u~u~+l. • • is a half  in- 

finite sequence in r~ c,  and if • - - u - i  u0 ~ Ec +, then • ' '  u~_l u~ is a one-sided se- 

quence in Zc • 

Analogous ly  to the two-sided case the elements in Ec± are partially ordered 

by inclusion. Given ~" E r~c± then S±(~ ") are the maximal  elements in r~c± that  

contain  ~" and we put M + for  all u0 E C + for  which one can find a sequence 

UoUj... maximal  in Ec+, in other  words M + = [Tr0S+(~'): ~" E EA+I; similarly 

M l = {zc0S-(~') : ~ E  ~A-] .  Let M C  C be the elements which are used to com-  

pose maximal  strings in r, o Obviously 

M =  [u n v: (u,v)  E M -  x M + J \ l Q } .  

S e t M - + ( a ) = I u E M  +-:aEu} ,  f o r a E A .  

For  a given w = {a,b] E C, we define relative cylinders U+-(alb) as follows: 

U+(alb) = {~~ U + ( a ) : ~  E S+(~ ) N U+(b), 

{a,b} = {~'0,~0} ~ ' " ~  {~'s,~s} < {~'s,~s}, s___ 0}. 

The sequence o f  symbols  {~,~j} originating at {a,b},  which is not necessarily 

part  o f  a transitive subsystem, leads into some transitive subshift (containing 

{~'s,~s}). I f  [a ,b}  were a symbol in some transitive subshift ~i, then U+(alb) 
would simply be U+(a). In the same manner  one defines U (a[b) C U-(a)  and 

S + - ( t l b ) = S + - ( D n U + ( a l b ) ,  M + - ( a l b ) = l ~ r o S + - ( ~ l b ) : ~ U + - ( a l b ) } ,  

~ ~ U+-(al b). Clearly one has a,b E u for  all u E g+-(al b). 

DEFINmON 8. We call w = { a, b } E C isolated if at least one o f  the intersec- 

tions u n v:  (u,v)  E M~(a[b )  x M+-(bla) is empty.  

We are able to formulate  the main  result. 

THEOREM 9. f~ has a local product structure i f  and only i f  C has no isolated 

elements. 

The result will follow f rom Lemmas  10 and 11. The next lemma shows the iso- 

lated elements make it impossible to define the local product .  We will find a point 

in f~ and pairs o f  points converging to it in the fbtopology,  but whose local stable 
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and unstable  " leaves"  have emp ty  intersection,  thus contradic t ing the un i fo rmi ty  

proper ty .  

LEMMA 10. There is no local product  structure on fi i f  C has an isolated 

element. 

PROOF. We shall construct  a sequence o f  pairs (xq,y q) E ~A X ~A that  con- 

verge to a point  in the diagonal  o f  fl x f~ and has the p rope r ty  that  the local sta- 

ble direction th rough  x q and the local unstable  direction th rough  yq have emp ty  

intersection.  (We write [x,y] instead o f  ( [ ( x ) , ( y ) ] )  as we ought  to.)  Denote  by 

U~(x) C fl the ball o f  radius 3' in the d-metr ic  centered at (x} E EA/-----. We shall 

see that  for  any posit ive 3" we cannot  find e > 0 so that ,  a l though d ( x , y )  <_ e, the 

local stable leave, WS(y) f) Ur(y),  and the local unstable leave, WU(x) f) U~(x), 

have non-empty  intersection. In particular we will arrange that  (xq,y q) converges 

exponent ia l ly  fast  to the diagonal  in f~ x fi as d (xq , y  q) <_ 2 lqr/2"l (r >_ 1) for  

q ~ 0% while all the intersections Wu(xq,{3) f) WS(yq,[3) are empty .  

Let w = [a, bl be isolated and say u (q v = Q for  some (u ,v)  E M - ( a [ b )  x 

M+(b t  a). Hence  there are sequences ( . . -  ~_~ ~o, ~'0~'1" " ") E U - ( a )  x U+(b) so 

that  

~r0S+( "" "~-~.!0) = u, ~'oS-(~'o~'~""" ) = v, 

and by defini t ion o f  S - ( b [ a ) ,  Yo can be cont inued for  negative coordinates  by a 

]]A-WOrd ~'s'"" ~'-1, ~'-1 ~ ~'0, related to ~s-.  "~-1 and such tha t  [~s,~'~] < [~s,~s} 

(s < 0). Let [v[,r~} ~ . . . - - ,  [v;,r[I = [~,~'~1 be a £c - loop .  Similarly one at- 

taches to ~0 on the positive side a EA-word ~ . . .  ~t, ~o ~ ~ ,  related to ~-~ . - .  ~', 

sat isfying [ ~t, ~t ] -< [ ~t, ~'t } and  picks a Ec - loop  [ v(', r( '  ] --+ . . . .  [ v~', r~' I = 

[ ~t, ~'t ]- For  q E N we define (bold characters  indicate the zero posi t ion) 

x q  . . . .  ~X- I  P tq~s"  " " ~ 0 ~ l " " "  ~t pt tq" " " , 

Yq . . . .  7"'q~s " " " ~'0 ~'1 " ' "  ~tr'q~t+l " ' ' ,  

where the dots  to the right o f  v" and to the left o f  r '  denote  something  that  

makes  x q and yq, respectively, one-sided transitive. We show that  the intersection 

Wu(xq,13) N Ws(yq,13) is empty .  Set 

uq = ~roS+( ~o . . . ~ , v ' ~ . . .  ) C u, 

u q  = 7 r o S - (  " ' "  Ttq~s " ' ' ~ 0 )  C U, 

and u q 0 v q = ¢3, q _ 1. Since by const ruct ion x q and yq are (one-sided) transi-  

tive, they cannot  be equivalent (here we use the assumpt ion  that  EA is reduced). I f  
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there were a z E WU(xq,[~) n WS(yq, fl), the zeroth coordinate of  it, z0, would 

have to lie in the intersection u q n v q, which, however, is empty by assumption. 

On the other hand, one easily verifies that d ( x q , y  q) <_ 2-[qr/2~,l and dies exponen- 

tially fast as q goes to infinity, where r = min(k, l )  _> 1. • 

LEMMA 11. I f  C has no isolated elements  then fl has a local produc t  structure. 

PROOF. Put fl = 2 IAI and we shall describe how to construct [y ,x] .  If d ( x , y ) ,  

x, y E V'A, is small enough so that xi - Yi, [ i [ _< 3, by Cartan's drawer principle at 

least one of  the {xi,yi}-~<i~_~ appears twice and thus lies in some Cj, say it is 

{xo,Y01. Put u = ~roS-( . .  " x - l x o l Y o ) ,  v = 7roS+(yoyl . . .  Ix0). Since ( u , v )  E 

M - ( x o  l Yo) x M+(Yo Ix0) and [xo,Yo}is not isolated, the intersection u n v is not 

empty. Hence there exist half-infinite sequences 

( . . . x ' , x [ ~ , y D y ; . . . )  E S - (  . . " x - , xo lYo)  x S + ( y o y l .  . . IXo) 

such that x6 = y6 E u n v. It is now easily verified that 

[y,x]  . . . .  x ' 2x '~y 6y~"  " 

satisfies the conditions for the local product structure given in Definition 6. To ver- 

ify the identity [[x,y] ,z] = Ix, z] for x , y , z  ~ ZA close enough to each other, one 

proceeds similarly. • 
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