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ABSTRACT
We consider finitely presented systems, which were introduced by Fried, and ex-
amine the circumstances under which these systems have canonical coordinates.
We give necessary and sufficient conditions for their existence in a combinatorial
way.

Finitely presented systems which were introduced by D. Fried [9] with the inten-
tion of generalising symbolic description of dynamical systems have recently be-
come of interest as a class of dynamical systems to which the extensive theory of
Axiom A systems and sofic systems can be extended without incurring too many
casualities. However, one property that gets lost in generalising is the local prod-
uct structure or canonical coordinates, which characterise strongly hyperbolic sys-
tems: with it the shadowing property also goes, although, as Fried shows, there are
still finite Markov partitions. On the other hand, much of the theory on Axiom
A systems can indeed also be formulated for finitely presented systems. As an ex-
ample we can point out Baladi’s paper [1], which gives a good account of how the
theory on Gibbs’ and equilibrium states can be carried over to finitely presented
systems.

The questions treated here arise in a natural way from Markov partitions on Ax-
iom A systems (cf. Smale [13] and Bowen {2}), for it is well known that an Axiom
A diffeomorphism on some manifold M is semiconjugate to the shift on a subshift
of finite type constructed by partitioning M in a certain way. However, as a sub-
shift of finite type can be isomorphic only to an Axiom A diffeomorphism over
a non-wandering set of zero dimension, the “boundary set”, that is the set of points
whose preimages in the shift consist of more than one point, contains essential in-
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formation about the topological structure of the non-wandering set, despite the
fact that it has measure zero for any ergodic measure which is positive on open
sets.

The present note resolves the question of canonical coordinates for finitely pre-
sented systems from the purely symbolic point of view, by establishing a combi-
natorial criterion (Theorem 9) as a necessary and sufficient condition for the
existence of a local product structure. In the first section we introduce finitely pre-
sented systems as quotients of subshifts £,. In section 2 we describe a non-
transitive subshift which is reminiscent of the ones used by Manning [11]. The
subshift thus obtained has a partial ordering (by inclusion) such that maximal el-
ements correspond to equivalence classes in . In section 4 we reduce the origi-
nal I, to a subshift in which transitive points have no other equivalent points
besides themselves with respect to the induced equivalence relation. In section 5 we
prove the main result, determining the conditions under which one can define a
local product structure (Definition 7) on the quotient space Q. Such a product
structure is equivalent to local canonical coordinates given by the foliations of
transversally intersecting stable and unstable directions. Let us note that Fried ([5],
Lemma 3) constructs a finite-to-one extension of @ with canonical coordinates.

1. Definitions

We consider a finite set of n symbols 4 = {1, ..., n} with the discrete topology.
Let A be an irreducible # X n-matrix of zeros and ones and define the shift trans-
formation on the space

L, = {xe [A: Ay, =1,i€ Z}
i€z

by (ox); = X;,1, { € Z. We use the notationa —» bif A, , = 1. We write x;- - - x, €

L4 if x;- - - x;is an allowed sequence in £, and say 7 € L, is a loop if 77 € L, and

denote by 7* its concatenation 77- - - 7, k-times, k a positive integer. The topology

on L, is generated by the cylinders sets

Ulxg-x) ={yELs: Vi yi=Xp X1},

where x, - - - x; are finite words in . The cylinders U(x; - - - x;) are closed-open
sets in L4, which is a totally disconnected space. A point x in L, is transitive if for
every y € L, and m > 0 there exists an integer k such that (o*x); = y; for |i| < m.
The subshift L, is (doubly) transitive if for every positive integer N there exist
n,n’ > N such that BN ¢"B %= @, BN o™ " B # & for open and non-empty
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B,B’ C L. This is the same as that A4 is irreducible, or that for every i,j €
{1,...,n) there exists an m > 0 such that (4™); ; > 0. Moreover, L, is topologi-
cally mixing if for every open non-empty B, B’ C L, there exists an N such that
BN o"B’ + @ for all n = N. Equivalent to this is that 4™ is a positive matrix for
all [arge enough m.

A finitely presented system is given as the quotient of a subshift of finite type
Y, by an equivalence relation which is induced by a symmteric and reflexive rela-
tion on the alphabet 4. To begin with denote by ~ a relation on A such that a ~
a, and @ ~ b implies b ~ a, a,b € A. We extend this relation to the subshift £,
and say x = y if x; ~ y; for all i € Z. If = is transitive, that is x = y = z implies
x = z for any three points x, y,z € L, then = is an equivalence relation on X,. We
say two words Xy -« X, Vi -y € L4 are related, xg---x; ~ Yooy, if X ~ yi,
k<i=<I Puta=|A4|®and we have the following result.

LeMMA 1. A relation ~ on A induces an equivalence relation on L, in the above
manner if and only if xq ~ zo for any three L,-words x_o > Xy ~ Vo' Vo ~
Z_ o2, related in the way indicated.

Proor. If x, ~ 7, for any three strings as in the Lemma, then = is an equiva-
lence relation by shift invariance.

Secondly, suppose ~ induces an equivalence relation = on L, and assume there
are three words of length 2« + 1, x -+ X, ~ Voo " Vo ~ Z—a" - - 2, Felated to
each other in the given order for which x, + z,. We shall contradict the transitiv-
ity of =. The strings are sufficiently long so that (yg,x,2x) = (1, X, 2;) for some
0 < k </ = «. Iterating this loop yields three points which are equivalent on pos-
itive coordinates. The same argument applied to negative indices yields three points
x, 3,2 € Ly for which x = y = z holds, but not x = z since by assumption x, + z,.

| |

We immediately can make the following observation:

COROLLARY 2. [f = is an equivalence relation on L4, then x; ~ z;,, k +a <i<
[ — « for any three strings X, - - -x; ~ Yy« Y1~ Zg- - 2y for which k + 2a < 1.

Assume that = is an equivalence relation and denote by 7 the quotient map
L4 - Q=YE,/=. Then we call the quotient space Q, which is equipped with the
automorphism induced by o and a suitable topology (section 3), a finitely presented
dynamical system. We also say the pair (£,,~) is finitely presented.

In [9] Fried gave four equivalent characterizations of finitely presented systems,
two more of which we shall mention here. A homeomorphism 7:Q—Q, @ a com-
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pact topological space, is called expansive if there exists a closed neighborhood
YV Qx9Qof the diagonal Asuchthat T* =T X T:2 X @ - Q x Q satisfies A =
M—w<j<w T*/V. We have the following result by D. Fried.

THEOREM 3 ([9], Theorem 1 and 2). (Q, T) is a finitely presented dynamical sys-
tem if and only if either

(i) T:Q - Q is expansive, or

(ii) (Q, T) admits arbitrarily fine but finite Markov partitions.

A Markov partition of (R, T) is a partition of Q into finitely many proper sets R;
which satisfy the so-called Markov property (R; is a proper set if it is the closure
of its interior). For a precise definition and details see {3] and [12].

Also note that Dateyama [6] showed that finitely presented systems 7:Q — Q
have the special pseudo-orbit tracing property, which means that @ has a finite par-
tition D such that any é-pseudo-orbit {&,:1} (d(T(&),£,41) < 6 for all i, & small),
for which T({;) and £, are in the same element of D for all times i, can be shad-
owed by a genuine orbit. In the special case where D = {Q}, Q has the usual
pseudo-orbit tracing property and thus canonical local coordinates. For subshifts
it was shown by Walters [14] that the pseudo-orbit tracing property is equivalent
to the subshift being of finite type.

The introduction of finitely presented systems in [9] was motivated by the de-
sire to unify the existing theories of strongly hyperbolic systems (Axiom A), zero
dimensional dynamical systems (sofic systems [15],[5]) and Thurston’s pseudo-
Anosov homeomorphisms. Let us now point out the connection with the first
mentioned class, or, as we shall actually do, with Ruelle’s Smale spaces [12]. Let
(Q, T) be a Smale space (a compact metric space with an expanding homeomor-
phism and a local product structure) with metric d(-,-) and homeomorphism T
with expansive constant €. Let {R;:j € J}, J a finite index set, be a Markov par-
tition of Q, where the rectangles R; are proper and satisfy int R, N int R; = & if
i # j. We denote by A the associated transition matrix defined by A; ; = 1 when-
ever int R; N T~'(int R;) is non-empty and zero otherwise. The Boolean matrix 4
defines a subshift , over the alphabet {1,...,|J|}. The shift 0: L, — L, is semi-
conjugate to T, T = wo, where the projection 7n:L, — Q, given by 7(x) =
Novcico T~ (R,,), is finite to one and one to one almost everywhere with respect
to any ergodic measure positive on open sets and in particular on doubly transi-
tive points (for definition see section 4) provided the partition is fine enough. If
3R denotes the collective boundary set of the rectangles R; then U;cz T'(dR) is
precisely the subset on @ on which ! is not unique. We say that two rectangles
are related if they have non-empty intersection. It follows that = is an equivalence



Vol. 73, 1991 FINITELY PRESENTED SYSTEMS 347

relation. Here we used expansiveness, since for two equivalent points x = y,
d(T*z(x), T*n(y)) < € for all integers k, and thus their 7-images must coincide,
w(x) = w(p), if the rectangles are in diameter less than half an expansive con-
stant e.

2. The shift over related symbols

In this section we introduce a non-transitive subshift which plays the key rdle
in discussing the quotient L,/~. We shall assume that X, is topologically mixing,
i.e. A" > 0 for n large enough.

From now on we assume that = is an equivalence relation on £,. Two words
Xe* Xy, Vi ooy € Ly are said to form a diamond if x, = y,, x; = y, and a collaps-
ing diamond if they are related. We will assume that = does not collapse diamonds.
This condition is in particular satisfied in the case where L, is the subshift derived
from a fine enough Markov partition of an Axiom A diffeomorphism. In [2] chap-
ter 2 this argument is used to show that the quotient map = : L, — @ is bounded
(at most | A4|?) to one. (To decide whether = collapses diamonds it is enough to
check pairs of strings whose length is at most |4|* + 1.)

Denote by A,, the (unordered) subsets {ay,...,a,} C A of n + 1 pairwise re-
lated symbols none of which appears twice. (In case of a Markov partition, 4,
consists of all combinations of # + 1 neighboring rectangles.) We introduce an or-
deringon A, by £ < ¢, £ = {ao,...,a,}, = {bg,...,b,} if there is a set of re-
lated T,-words x{---x4, i = 0,...,n, connecting £ with { (i.e. x{ ~ x, i,j =
0,...,n, k=0,...,mfor some m =1, such that £ = {x}:i}, { = {x},:i}). Thus
A, is a disjoint union of subsets 4, ,, Kk = 1,...,k,, such that if £,,&, € 4,
then £, < &, &, < &, (and therefore £, < &) unless A, 4 consists of a single sym-
bol which cannot be repeated. If £ € A4, and F € A, ,, (n,k) # (m,]), can be
joined up, then either £ < ¢ or { < £ (where < means < holds but not =). In this
way we partially order U, , A4, «. Observe that it is impossible to have £4,&, €
A, v, $E Ay, (n,k) # (m, 1), such that & < ¢ < £,. This is obvious for n =m
(from the definition); and if n # m we have, by transitivity of L, ,, §p < { < &, <
£q, which implies that there are related words beginning in £, and returning to it.
A set of related words running through the loop £y < ¢ < &, < &y induces on £, a
permutation 7, a power of which is the identity. Since &, and { have different
cardinalities we would obtain a collapsing diamond. Summing up: for n # m we
have thus always either 4, , < A4, ;, or A, ; < A, «, or neither.

We prune away those 4, , whose elements do not occur in doubly infinite se-
quences composed over Uy , A, x. Denote the new symbol set by C and define a
| C| x | C|-transition matrix A* by setting A*[£,{] = 1, £, { € C, whenever there
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exist L-words {a;a;:1,j} (of length 2) such that {g;:i} = { and (g;:j} = {; and
A*[£,¢] = 0 otherwise. This defines a subshift £ whose transition matrix C is,
with suitably arranged C,

A* 0 ... 0
0 A3 --- 0
0 --- 0 A}

s = 1, where the submatrices A are of square block upper triangular form (if
suitably arranged)

At,l * *
0 A, *
0 e 0 AM_

for some r = r, = 1. One of the submatrices A7 contains 4 somewhere in its diag-
onal. The transition matrices A, ; determine in the usual way subshifts L, , over
the alphabets A, . Call (A4, :k,n} and {E, , :k,n} from now on by single in-
dices: {C;:i} and {X,:i}. Observe:
(i) Cis closed under intersections of its elements (as subsets of 4);
(i) the subshifts I; are topologically transitive unless they are empty (then -
C; = { ¢} such that { £ {);
(iii) Denote by &(i) the cardinality of the elements of C; as subsets of 4 and
call 8(i) = &(i) — 1 the dimension of C; (also 6(£) =8(C;) =48(i), £ € C)).
For x € £, we denote by (x) = {z € L,:z = x} € L the equivalence class of
x and by (x); = {z; € A :7 € (x)} its i-th coordinate. On I, we have a partial or-
dering by inclusion: x C y if x; C y; (as subsets of A) forall i € Z, x,y € L.
Equivalence classes (x) are maximal elements in . and, vice-versa, maximal ele-
ments in I correspond to points in the quotient L /=.

3. The topology on L,/=

The natural class of Holder equivalent metrics on @ = L, /= was determined in
[8] by Fried. We outline his argument here. As in Corollary 2 let o = |4 |* and de-
fine symmetric neighborhoods of the diagonal in £, x L, by

U, = {(x,y) €4 X Lyix; ~ y; for all |i| < 2an},
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n=1,.... Weclaim that U, U, U, C U,_;, for all n > 1, where U, U, =
{(x,2) :3y € L, such that (x,y),(»,z) € U,}. To see this, let w,x,y,7 € L, satisfy
W; ~ X; ~ ¥; ~ 2; Y|i| = 2an. Corollary 2 applied once yields w; ~ y; for |i] <
a(2n — 1) and a second time, shows that w; ~ z;, |i| < 2a(n — 1). Hence
U, U,-U,C U,_,, n>1, and by Frink’s metrization lemma ([10], p. 185) there
exists a pseudo-metric d on Q, with the property U, C {(x,») :d(x,¥) < 27"} C
U,_,, n € N. In fact d is a metric since x, y € L, represent the same point in Q if
and only if x; ~ y;, i € Z, which is the case if and only if (x,y) lies in the intersec-
tion N ,»; U,, which is the diagonal in L,/= x L,/=.

The distance function d’(x,y) = N, where p = max{q:x; ~ ¥;, |i| < q} is with
A =272 equivalent to d: C~'d < d’ < d, where C = 2%®, As ¢ is expansive, the
topology on  induced by d is generated by the “cylinder sets” n(U(uvg - - - v;)),
where U(v,---v) = (2 € L4:2, €EV;, k <i =<} and vy-- v, are finite strings in
Lc. For x € £, we define:

Wix,k) ={z€ L4z~ x;, i = ~k}, Wix,k)={z€Ly:2 ~x;, [ < kY,

whose unions over k& € Z are the stable, W*(x), and unstable, W*(x), directions
through x. For y € W5(x,1) we have d(o**x,0%*y) < 27'd(x,y), I = 1, and
therefore d(o'x,0'y) < C27"?*d(x,y), | = 1, with some C < 22*~!. Following
Mather we can replace this metric by an adapted one, d”, for which the constant
C equals one: Let v = 2712% < 1 and define d” (x,¥) = Docic2e ¥ 'd(0'x,0'y)
which, as one readily verifies, is an adapted metric on Q. The shift ¢ on X, in-
duces a homeomorphism on 2 which we again denote by . For positive k the
homeomorphism o on W*(x, k) contracts distances in the d”-metric by v and ¢~
contracts distances on W*(x, k) by a factor . The stable and unstable directions
through the points of @ are W*(x,1) and W*(x,1). Interestingly enough, it is at
this point possible to draw conclusions as to what the topological dimension of the
quotient space might be. In fact, with a result of Fathi’s ([7], Corollary 5.3}, we
get an upper bound. Hence, the topological dimension, which is bounded by
the Hausdorff dimension HD,(Q), is less than or equal to 2A(Q)/|logy]| =<
4ah(L4)/log2, where h is the topological entropy. This estimate applies to any «
for which the statement of Lemma 1 holds, and in general can be chosen much
smaller than | A4]3.

4. Reducing L,

The condition that equivalence classes are finite does not suffice to guarantee
that a transitive point has no other equivalent point besides itself. In this section
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we introduce a reduction procedure and show that it is always possible to assume
that transitive points have trivial equivalence classes. A point x in £, (L,) is (dou-
bly) transitive if for any given y € £, (X,;) and n = 1 one can find positive integers
m, m, such that y; = (¢"x); = (67""x); for |i| < n. In other words, every L,-word
(L,-word) appears infinitely often in the past and future dimensions of x. In this
section we treat the case where L, has transitive points with non-trivial equiva-
lence classes and by using Theorem 5 we shall see that £, can be replaced by an-
other subshift of finite type in which transitive points have trivial equivalence
classes and whose quotient is isomorphic to @ = L, /=.

Similar to the notation we introduced for L, we set U(x,--x,) = (£ € L;:
£ 5, =% Xt )y X+ 0 - x: € Ly, for the closed-open cylinders in X; with x,- - - x;
on the coordinates from s to ¢.

LeEmMMA 4. Let x be a transitive point in some L,. Then any two £,{ € x C L,
are either identical or disagree on all coordinates.

Proor. Let y be a transitive point in £,. We have to show that different
L, -points £, { € x differ on all places, that is £, # ; for all i € Z. Suppose &, = &
for some k and pick an / such that £, # . Without loss of generality we can as-
sume that k& < /. Since x is transitive, the word xy - - - x; appears infinitely often,
on the “positive side”, say at intervals of lengths m,,m,, ... (all of which we as-
sume to be bigger than / — k). We want to construct a collapsing diamond. Now
Xk**"Xi** " Xk+m, Deed not have a collapsing diamond in L,, because strings be-
ginning in x, (as subsets of A4) at the same element do not necessarily end up
again at the same element in x4, = xx. However, it follows from Cartan’s
drawer principle that Xi4m, * *Xk+m, has a collapsing E,-diamond for some
p<aq. |

Put Q, = £, /=, where we denote by = the equivalence relation induced on Z..
For &,/ satisfying 8(k) = 6(/) + 1, define a map v from C, into C/, the power set
of C,, by

v(x) = {Ix" - PP O xR L X N G,

x=1{x%...,x*} € C,and put v(C,) =U{v(x):x € Ci} C C,. In general only
the inverse v is well defined on v(Cy). Denote by v(X;) the subshift over the
alphabet v(C;) with transitions induced by v. In other words, we set { — ¢’ if
(&, ¢8) Ev(x) X v(x') for some x,x' € C, x = x. If @ #v(C,) C C, then v(Z;)
is the “union” of subshifts that are isomorphic to each other. We formulate the
main result of this section.
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THEOREM 5. (i) If v(Ey) = L, then Q, = Q,, and
(i) if v(Zy) # L, for all £, with (k) = 6(1) + 1, then transitive points in L,
have trivial equivalence classes.

Proor. It is obvious that equivalence classes in £, are by v:L; — L, again
mapped into equivalence classes, and, on the other hand, it is easily seen that
points in I, that are not equivalent cannot be mapped to equivalent points in E,.
Hence if v(E,) = &, then their quotients are isomorphic, where the isomorphism
is defined in the obvious way by v.

We show that if every point in X, has a non-trivial equivalence class then there
exists a I, such that v(X;) = L,. Suppose £ is a sequence in L, with non-trivial
equivalence class. By Lemma 4 it follows that £; & §; for all { € ({)\§ C L,.
Set & = (£2,...,80), &= (&0 ...,¢8D ). Then we can find indices j:Z —
{0,...,8(])) so that {/” ¢ ¢, and ;f‘” S U ieZ. Thus & =& U ¢/ ar
elements in some C,, (k) = 6(/) + 1. In particular £ can be chosen to be transi-
tive and therefore realises every possible transition. Thus £ € £, and v(§') = ¢
from which follows that v(Z,) = L, and therefore by the first part of the theorem

= Q). [ ]

DEerINITION 6.  We call a subshift £, or subalphabet C, reduced if L, satisfies
the condition of Theorem 5(ii).

As a consequence of Theorem 5, for any finitely presented system (L, ,=),
there are numbers ¢[0],...,¢{p] such that

(i) o(Llg+ 1) =06(L[gD + 1, v(Eeig41)) = Lgpq for 0 = g < p,

(i) transitive points in L,[,; have trivial equivlaence classes, and

(iii) Qyy) = La/=,0=<g=p.

5. The product structure on

In this section we prove the main result, giving necessary and sufficient condi-
tions under which a finitely presented system has a local product structure. The cri-
terion appears rather natural. The idea is to consider half-infinite related strings
and to examine the situations under which a positive infinite sequence can be linked
to a negative infinite sequence. In practice it takes a finite number of steps to de-
cide this problem, which makes Theorem 9 easily accessible to the actual compu-
tation of concrete examples. We use the definition of product structure as given
by Ruelle ([12], chapter 7).

DerFINITION 7. A local product structure on Qisamap [-,-]: Q x @ - Q defined
in a neighborhood of the diagonal and has the properties
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@) [xx] =x, [[xy],z] = [x[»z]] = [xz], [ox,0y] = o[x,y], whenever
defined;
(ii) there exist ¥y > 0, A € (0,1) so that
() if d(y;,x) < v and [y, x] = y;, i = 1,2, then d(o"y(,0"y;) <
N'd(y;,y2), n>0;
B) if d(x,z;) < v and [x,z;] = z;, § = 1,2, then d(0"z;,0"2;) =<
A"l d(z,,22), n < 0.
The local stable and unstable directions through x are given by

Wi (x)={yeQ:x,yl =y d(x,y) =\}
and

Wi (x)={yeQ:[yx] =y d(xy) <\

The point [x, y] lies in the stable direction of x and in the unstable direction of y.
The product structure on subshifts is given by [x,y] =---y_, yoX; X, - -+ and de-
fined whenever d(x,y) < 1 (if the subshift is of type 2) with the usual metric in-
troduced in section 1. Let us note that Bowen ([4], Proposition 6.2) showed that
if a shiftspace has a local product, the subshift necessarily is of finite type.

We have to suffer some more notation and begin by introducing one-sided sub-
shifts (as usual A7 > 0, for n large enough):

L, = {xe I A4:4,., =1 vi<0},
. 0

—00, ...,

Lq+ = {ye I A:4,,. =1 vizo}.
N

0,

oo

Denote by U *(a) the cylinder that consists of all sequences yo ¥, - - € L4+ which
begin with y, = ¢ and similarly U (a) = {---x_1x € L4-:x5 = a}. Two se-
quences XoX; - -+, Yo ¥+ - - in L4+ are related, xox; -+ ~ Yoy, - - -, Whenever x; ~ y;,
i=0,1,... (similarly for £,-). We use the notation = whenever either sign ap-
plies. For ¢ € L4+ we put

SE(() =g €Lt~ (),

for the set of one-sided sequences related to {. Denote by =, the projection onto
the i-th coordinate, for instance oS ({) = {¥g: - - -Y_1 Yo € ST({)}, similarly
7oS1({). As C and I the corresponding one-sided objects C*, C~, L+, Lc- are
defined as follows. To find C* we take U, , 4,  and prune away those symbols
that cannot (in I.) be extended infinitely in a forward direction. Similarly C~ is
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found as Uy, , A, « less those elements that do not allow an infinite backward ex-
tension. Transition matrices C*,C~ (and similarly A*(/), A~(i)) are defined in
the same way as in section 2. We call the associated one-sided shift spaces Lo+,
Lo-. Let B = 2141 and note that (i) C* N C~ = C, (ii) Ec+,Lc- have the same
transitive subshifts as ., and (iii) if upu, - - € L+, then ugug,, -« - is a half in-
finite sequence in L, and if «--u_,uy € Ec+, then - - -ug_ug is a one-sided se-
quence in L.

Analogously to the two-sided case the elements in L.+ are partially ordered
by inclusion. Given ¢ € L= then S*({) are the maximal elements in L.+ that
contain { and we put M* for all 4y € C* for which one can find a sequence
uou, - - - maximal in Eq+, in other words M+ = {7, S*({): ¢ € Ly+}; similarly
M~ ={mS({): ¢ € Li-}. Let M C C be the elements which are used to com-
pose maximal strings in .. Obviously

M={uNv:(uv)eM X M*}\ (D).

Set M*(a)={ueM*.acu}, forac 4.
For a given w = {a,b} € C, we define relative cylinders U i(arlb) as follows:

U*(a|b) = {g’E Ut(a):3t € ST() N U (D),
{a,b} = [g‘OaEO] e {g‘Ssgs} = [§'S,£S],SZO].

The sequence of symbols {{;,¢;} originating at {a, b}, which is not necessarily
part of a transitive subsystem, leads into some transitive subshift (containing
{5 &), If {a,b} were a symbol in some transitive subshift I;, then U*(a|b)
would simply be U™*(a). In the same manner one defines U (a|b) C U~ (a) and

SE(L|b) =SH ()N U*(alb), M*(a|b)={mS*({|b):¢ € U*(a|b)},
¢ € U*(a|b). Clearly one has a,b € u for all u € M*(a|b).

DeriNiTiON 8. We call w = {a,b} € C isolated if at least one of the intersec-
tions u N v: (u,v) € M*(a|b) x M*(b|a) is empty.

We are able to formulate the main result.

THEOREM 9. Q has a local product structure if and only if C has no isolated
elements.

The result will follow from Lemmas 10 and 11. The next lemma shows the iso-
lated elements make it impossible to define the local product. We will find a point
in © and pairs of points converging to it in the Q-topology, but whose local stable
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and unstable “leaves” have empty intersection, thus contradicting the uniformity
property.

LEmMA 10. There is no local product structure on Q if C has an isolated
element.

Proor. We shall construct a sequence of pairs (x9,y9) € L, X L, that con-
verge to a point in the diagonal of @ x © and has the property that the local sta-
ble direction through x4 and the local unstable direction through y9 have empty
intersection. (We write [x, y] instead of {[{x),{y)]) as we ought to.) Denote by
U, (x) C Q the ball of radius v in the d-metric centered at {x) € L,/~. We shall
see that for any positive y we cannot find e > 0 so that, although d(x,y) <, the
local stable leave, W*(y) N U, (y), and the local unstable leave, W*(x) N U, (x),
have non-empty intersection. In particular we will arrange that (x?,y?) converges
exponentially fast to the diagonal in @ x Q as d(x9,y?) < 219721 (r = 1) for
g — o, while all the intersections W#*(x?,8) N W*(y9,3) are empty.

Let w = {a,b} be isolated and say 4 N v = & for some (u,v) € M (a|b) x
M™(b|a). Hence there are sequences (- --£_;£0,{o{1-++) € U (a) X UT(b) so
that

woSt(---£ &) =u, TS (GHbi ) =,

and by definition of S™(b | a), ¥o can be continued for negative coordinates by a
Liword &--- ¢y, &1 — fo, related to £---£_; and such that {&, ) < {&, &)
(s < 0). Let {p{,7{} =+++— (v/,7/} = {5, &} be a Eq-loop. Similarly one at-
taches to £, on the positive side a £,-word &,---§,, & — &, related to -+ - &7,
satisfying (£,,§} < {&,§) and picks a Ec-loop {»{,7{} = - = {w, 74} =
{£,,8]. For g € N we define (bold characters indicate the zero position)

X9 = ko WE - Eob e E YT,

AN EERY S JERRY Y CEERN ¢S S X PRI

where the dots to the right of »” and to the left of 7 denote something that
makes x7 and y9, respectively, one-sided transitive. We show that the intersection
Wi(x?,8) N W(y9,3) is emply. Set

u? =St (& &7 ) Cuy,
vi=mo S TG B C o

and u? N v? =, g = 1. Since by construction x4 and y9 are (one-sided) transi-
tive, they cannot be equivalent (here we use the assumption that L, is reduced). If
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there were a z € W¥(x9,8) N W*(y9,8), the zeroth coordinate of it, z,, would
have to lie in the intersection #? N v?, which, however, is empty by assumption.
On the other hand, one easily verifies that d(x?, y9) < 2~(972¢] and dies exponen-
tially fast as g goes to infinity, where r = min(k,/) = 1. n

Lemma 11.  If C has no isolated elements then Q has a local product structure.

Proor. Put 8 =2!4! and we shall describe how to construct [y,x]. If d(x,y),
X,y € Ly, is small enough so that x; ~ y;, |i| < 8, by Cartan’s drawer principle at
least one of the {x;,;}_s<;<s appears twice and thus lies in some C;, say it is
{X0,¥0}. Put u = moS™( -+ -X_;1Xo| Yo}, v = meS*(¥oy1- - | Xo). Since (u,v) €
M~(xo| yo) X M*(y,| %) and {xo, o} is not isolated, the intersection u N v is not
empty. Hence there exist half-infinite sequences

(- x_ X0, yoy1---)eS(-- 'X—1x0|yo) X S*(yoyi--- |xo)

such that x5 = yy € u N v. It is now easily verified that

[y,x] :...x’_zx’_]y(’)yi...

satisfies the conditions for the local product structure given in Definition 6. To ver-
ify the identity [[x,¥],2] = [x,z] for x,y,z € £, close enough to each other, one
proceeds similarly. n
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